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ABSTRACT

INTRODUCTION

01

The HYDRUS 1D model, developed by the USDA Salinity Laboratory, is extensively used 
for studying solute transport and water movement in soil. It simulates one-dimensional 
water, heat, and multiple solutes in variably saturated media, allowing for 
comprehensive analysis of soil water dynamics. This study summarizes the input data 
requirements, calibration process, and results obtained from various studies utilizing the 
HYDRUS-1D model in agricultural contexts. Key findings include its effectiveness in 
simulating infiltration rates, moisture and nutrient dynamics in cereal and fibre crops, 
groundwater recharge, and salt leaching under different irrigation regimes and climatic 
conditions. The model's versatility and accuracy in capturing complex interactions within 
the soil-plant-water system make it a valuable tool for optimizing agricultural water 
management and mitigating environmental impacts. Despite its efficacy, challenges such 
as model validation and uncertainty assessment persist, highlighting the need for 
ongoing research and refinement. Overall, the HYDRUS-1D model plays a crucial role in 
advancing the understanding of soil hydrology and supporting sustainable agricultural 
practices.
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The HYDRUS 1D model, developed by the USDA Salinity 

Laboratory, is widely utilized for studying solute transport, 

particularly the leaching of accumulated salt and water 

movement in soil. This software package, known as 

HYDRUS-1D, is extensively employed to simulate one-

dimensional water, heat, and multiple solutes in variably 

saturated media ( ). It is capable of Simunek et al. 2008

analysing soil water movement in one direction (upward or 

downward) under both rainfed and irrigated conditions, with 

soil water dynamics represented by Richard's equation.Soil 

salinity measurements taken before sowing and after 

harvesting crops often fail to accurately capture the vertical 

movement of salts in the soil profile during the crop growing 

season. To achieve more precise measurements of soil salinity 

within the soil profile, researchers have turned to the 

HYDRUS-1D model ( ).Liu et al. 2016

Input data requirement

To conduct simulations using HYDRUS-1D, several essential 

input parameters and conditions are required. These include 

soil hydraulic properties, which define soil water retention 

curves, hydraulic conductivity functions, and potentially soil 

temperature functions.The lower boundary of the soil profile 

was established at a fixed depth, typically corresponding to 

the maximum rooting depth of the crop (1 m, 2 m, and 3 m). 

However, boundary conditions at the top were determined by 

factors such as evaporation and precipitation. Potential 

evapotranspiration (PET) was computed using the Penman-

Monteith equation, utilizing daily weather data such as solar 

radiation, air temperature, humidity, and wind 

speed.Moreover, crop characteristics like minimum crop 

resistance, surface albedo, and crop height were taken into 

account in the model. Potential evaporation and transpiration 

were estimated following the Food and Agricultural 

Foundation-56 approach and fine-tuned with measured leaf 

area index data.

The calibration of the HYDRUS-1D model relied on measured 

volumetric water content and soil water electrical 

conductivity (EC) data obtained throughout the crop growing 

season. Metrics such as the root mean square error (RMSE) 

and correlation coefficient (r) between observed and 

simulated results were utilized to assess the modelling 

performance. Following calibration, the HYDRUS-1D model 

was deemed appropriate for simulating soil salinity variations 

within the study area. Additionally, the HYDRUS-1D model 

computes water uptake rates as a function of soil water 

pressure head, providing a comprehensive understanding of 

water dynamics within the soil profile.
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RESULTS AND DISCUSSION

The HYDRUS-1D model has demonstrated its capability to 

adequately describe infiltration rates, particularly through the 

use of the modified Green-Ampt model. This model has been 

extensively utilized in simulating water movement and solute 

transport in various soil types, including wettable soils. 

However, its applicability to the infiltration of water-repellent 

soils (WRS) at different depths has been less explored in the 

literature ( ).Yang et al. 2021

HYDRUS-1D was developed by the United States Department 

of Agriculture (USDA) Salinity Laboratory. It has found 

widespread application in studying various soil processes, 

including the leaching of accumulated salt and water 

movement in agricultural soils ( ). Liu et al. 2016 Yurtseven et 

al. 2013( ) have utilized HYDRUS-1D model to analyze water 

flow and solute transport in soil columns of specific 

dimensions, under varying irrigation conditions and water 

qualities. They highlighted the versatility and utility of the 

HYDRUS-1D model in addressing diverse research questions 

related to soil hydrology and solute dynamics.

Water and nutrient dynamics for cereal and fibre crops 

In this context, ( ) applied the HYDRUS 1D model Liu et al. 2016

to study a winter wheat-summer maize cropping system. 

They calibrated model based on measured volumetric water 

content and soil water electrical conductivity and they found 

that yields significantly increased under saline water 

irrigation during the jointing stage, while no significant yield 

reductions occurred than fresh water irrigation. Likewise, 

Chen et al. 2022( )investigated field water and nitrogen 

dynamics in paddy fields using a well-calibrated HYDRUS-

1D model. They observed better accuracy in simulating NO -3
+N concentration compared to NH -N. Moreover, they found 4

that increased rainwater storage in paddy fields led to higher 

deep percolation losses and increase the risk of nitrogen 

leaching. ( ) applied HYDRUS-1D model to Gulati et al. 2022

estimate potential groundwater recharge in the central Punjab 

region of India. They observed excessive surface runoff losses 

due to higher average rainfall during the growing period of 

transplanted and direct seeded rice (DSR). Transplanted rice 

observed lower percolation losses than direct seeded rice due 

to puddling. ( )Li et al. 2014 assessed water flow and nutrient 

losses in DSR fields across varied conditions.  Chen et al. 2022( )

investigated field water and nitrogen dynamics in paddy 

fields located in Jiangsu Province, China. Conversely, 

Mo'allimet al. 2018( ) analysed water balance components in 

rice fields under conventional irrigation system. Similarly, 

Sepaskhah and Tafteh 2012( )simulated water and nitrate 

leaching in rapeseed and maize fields under varying nitrogen 

rates and irrigation. examined into soil-water Iqbal et al. 2020( )

dynamics in sweet corn production in tropical rainfed 

conditions.  modelled soil moisture dynamics Patleet al. 2018( )

in irrigated sugarcane crops. assessed the Er-Raki et al. 2021( )

potential of HYDRUS-1D in estimating soil moisture and 

evapotranspiration in winter wheat fields under varying 

water management scenarios in semi-arid region of Morocco. 

Moreover, simulated soil salinity in corn Moghbelet al. 2022( ) 

root zones under a linear move sprinkler irrigation system.

Overall, these studies demonstrate the versatility and 

effectiveness of HYDRUS-1D in simulating various aspects of 

soil water dynamics, nutrient transport, and crop growth in 

different agricultural systems and environmental conditions. 

Worldwide, various studies were conducted to estimate 

components of water and nutrient dynamics under field 

conditions are presented in .Table 1

Table 1: Water and nutrient dynamics in cereal and fibre crops 

Parameters   Crop Location/Site References 

Soil salt accumulation and grain yield Winter wheat-summer maize North China Liu et al. (2016) 

Field water and N-dynamics Paddy  Jiangsu Province, China Chen et al.(2022) 

Groundwater recharge Paddy Central Punjab Gulati et al.(2022) 

Water flow and water losses Paddy Taiho Lake Basin, East China Li et al.(2014) 

Nitrogen (solute) transport  Paddy Tanjung Karang Rice Irrigation 
Scheme, Sawah Sempadan, 

Mo’allimet al.(2018 )  

Ground water flow simulation  Paddy  Tedori River alluvial fan, Japan. Iwasaki et al.(2014) 

Water movement through soil profile Paddy Kushtia, Bangladesh Roy et al. (2021) 

Soil water percolation and water balance Paddy Jingmen City, China Xu et al. (2017) 

Groundwater table and water balance Cotton Xinjiang, China Han et al.(2015) 

Groundwater table and Solute (Atrazine) 
concentration  

Agricultural lands Zwischenscholle Aquifer, Germany Beegumet al.(2020) 

Solute (salinity) transport  Corn Garden City, Kansas Moghbelet al. (2022) 

Soil water dynamics     Sweet corn Serdang, Malaysia Iqbal et al.(2020) 

Water balance components  Winter wheat Marrakech city, Morocco Er-Raki et al.(2020) 

Water and solute (salt) transport Wheat North China plain Li et al.(2021) 

Water movement  Wheat RamotYssakhar, northern Israel Miller et al.(2019) 

Water movement scenarios  Winter wheat  Fergana Valley, Central Asia Karimov et al.(2018) 

Groundwater contribution to the Root Zone Wheat  Bangbu City, Anhui Province, china Zhu et al.(2018) 

Soil water dynamics Sugarcane Karnal district, Haryana, India Patleet al. (2018) 
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Water and nutrient dynamics in horticultural crops 

In this context, ( )optimized a simulation Ventrella et al. 2019

framework to describe soil water fluxes in horticultural 

cropping systems, particularly in drip-irrigated watermelon 

cultivation. ( )applied HYDRUS model to Ghazouani et al. 2016

determine optimal drip lateral depth for eggplant crops under 

localized irrigation. ( )assessed soil-water Autovino et al. 2018

dynamics in olive orchards under different irrigation 

systems. ( ) estimated soil-water and nitrate-Mokariet al. 2019

nitrogen variations in flood-irrigated pecan orchards using 

HYDRUS-1D and highlighted the model's ability to simulate 

soil moisture dynamics and inform nitrogen management 

strategies.However, ( )assessed soil water Ogundipe et al. 2016

dynamics in tomato cultivation under different irrigation 

regimes in Nigeria. They compared the result of the soil water 

balance (SWB) approach and HYDRUS 1D model. They found 

both methods suitable for simulating soil water dynamics in 

humid tropical climates, although with some discrepancies in 

SWC approach estimation. Globally, various studies were 

conducted to estimate components of water and nutrient 

dynamics in horticultural crops conditions are presented in 

Table 2.

CONCLUSION

Overall, various studies have highlighted the importance of 

considering factors such as evapotranspiration, soil texture, 

and water management practices in agricultural water 

management. The HYDRUS-1D model has been effective in 

simulating complex interactions in various agricultural 

systems, including puddled paddy fields, sugarcane 

cultivation, and sweet corn production under tropical rainfed 

conditions. Moreover, researchers have utilized the model to 

assess groundwater recharge, deep percolation losses, and 

nitrate leaching in different cropping systems, providing 

insights for optimizing water use efficiency and minimizing 

environmental impacts. Despite its effectiveness, some 

studies have noted discrepancies in simulating soil water 

dynamics under certain conditions, emphasizing the need for 

further model calibration and validation. Overall, the 

HYDRUS-1D model continues to be a valuable tool for 

understanding and managing soil-water-plant interactions in 

agricultural systems.
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